Herschel married when considerably advanced in life and he lived to enjoy the indescribable pleasure of finding that his only son, afterwards Sir John Herschel, was treading worthily in his footsteps, and attaining renown as an astronomical observer, second only to that of his father. The elder Herschel died in 1822, and his illustrious sister Caroline then returned to Hanover, where she lived for many years to receive the respect and attention which were so justly hers. She died at a very advanced age in 1848.
The author of the "Mecanique Celeste" was born at Beaumont-en- Auge, near Honfleur, in 1749, just thirteen years later than his renowned friend Lagrange. His father was a farmer, but appears to have been in a position to provide a good education for a son who seemed promising. Considering the unorthodoxy in religious matters which is generally said to have characterized Laplace in later years, it is interesting to note that when he was a boy the subject which first claimed his attention was theology. He was, however, soon introduced to the study of mathematics, in which he presently became so proficient, that while he was still no more than eighteen years old, he obtained employment as a mathematical teacher in his native town.
Desiring wider opportunities for study and for the acquisition of fame than could be obtained in the narrow associations of provincial life, young Laplace started for Paris, being provided with letters of introduction to D'Alembert, who then occupied the most prominent position as a mathematician in France, if not in the whole of Europe. D'Alembert's fame was indeed so brilliant that Catherine the Great wrote to ask him to undertake the education of her Son, and promised the splendid income of a hundred thousand francs. He preferred, however, a quiet life of research in Paris, although there was but a modest salary attached to his office. The philosopher accordingly declined the alluring offer to go to Russia, even though Catherine wrote again to say: "I know that your refusal arises from your desire to cultivate your studies and your friendships in quiet. But this is of no consequence: bring all your friends with you, and I promise you that both you and they shall have every accommodation in my power." With equal firmness the illustrious mathematician resisted the manifold attractions with which Frederick the Great sought to induce him, to take up his residence at Berlin. In reading of these invitations we cannot but be struck at the extraordinary respect which was then paid to scientific distinction. It must be remembered that the discoveries of such a man as D'Alembert were utterly incapable of being appreciated except by those who possessed a high degree of mathematical culture. We nevertheless find the potentates of Russia and Prussia entreating and, as it happens, vainly entreating, the most distinguished mathematician in France to accept the positions that they were proud to offer him.
It was to D'Alembert, the profound mathematician, that young Laplace, the son of the country farmer, presented his letters of introduction. But those letters seem to have elicited no reply, whereupon Laplace wrote to D'Alembert submitting a discussion on some point in Dynamics. This letter instantly produced the desired effect. D'Alembert thought that such mathematical talent as the young man displayed was in itself the best of introductions to his favour. It could not be overlooked, and accordingly he invited Laplace to come and see him. Laplace, of course, presented himself, and ere long D'Alembert obtained for the rising philosopher a professorship of mathematics in the Military School in Paris. This gave the brilliant young mathematician the opening for which he sought, and he quickly availed himself of it.
Laplace was twenty-three years old when his first memoir on a profound mathematical subject appeared in the Memoirs of the Academy at Turin. From this time onwards we find him publishing one memoir after another in which he attacks, and in many cases successfully vanquishes, profound difficulties in the application of the Newtonian theory of gravitation to the explanation of the solar system. Like his great contemporary Lagrange, he loftily attempted problems which demanded consummate analytical skill for their solution. The attention of the scientific world thus became riveted on the splendid discoveries which emanated from these two men, each gifted with extraordinary genius.
Laplace's most famous work is, of course, the "Mecanique Celeste," in which he essayed a comprehensive attempt to carry out the principles which Newton had laid down, into much greater detail than Newton had found practicable. The fact was that Newton had not only to construct the theory of gravitation, but he had to invent the mathematical tools, so to speak, by which his theory could be applied to the explanation of the movements of the heavenly bodies. In the course of the century which had elapsed between the time of Newton and the time of Laplace, mathematics had been extensively developed. In particular, that potent instrument called the infinitesimal calculus, which Newton had invented for the investigation of nature, had become so far perfected that Laplace, when he attempted to unravel the movements of the heavenly bodies, found himself provided with a calculus far more efficient than that which had been available to Newton. The purely geometrical methods which Newton employed, though they are admirably adapted for demonstrating in a general way the tendencies of forces and for explaining the more obvious phenomena by which the movements of the heavenly bodies are disturbed, are yet quite inadequate for dealing with the more subtle effects of the Law of Gravitation. The disturbances which one planet exercises upon the rest can only be fully ascertained by the aid of long calculation, and for these calculations analytical methods are required.
With an armament of mathematical methods which had been perfected since the days of Newton by the labours of two or three generations of consummate mathematical inventors, Laplace essayed in the "Mecanique Celeste" to unravel the mysteries of the heavens. It will hardly be disputed that the book which he has produced is one of the most difficult books to understand that has ever been written. In great part, of course, this difficulty arises from the very nature of the subject, and is so far unavoidable. No one need attempt to read the "Mecanique Celeste" who has not been naturally endowed with considerable mathematical aptitude which he has cultivated by years of assiduous study. The critic will also note that there are grave defects in Laplace's method of treatment. The style is often extremely obscure, and the author frequently leaves great gaps in his argument, to the sad discomfiture of his reader. Nor does it mend matters to say, as Laplace often does say, that it is "easy to see" how one step follows from another. Such inferences often present great difficulties even to excellent mathematicians. Tradition indeed tells us that when Laplace had occasion to refer to his own book, it sometimes happened that an argument which he had dismissed with his usual formula, "Il est facile a voir," cost the illustrious author himself an hour or two of hard thinking before he could recover the train of reasoning which had been omitted. But there are certain parts of this great work which have always received the enthusiastic admiration of mathematicians. Laplace has, in fact, created whole tracts of science, some of which have been subsequently developed with much advantage in the prosecution of the study of Nature.
Judged by a modern code the gravest defect of Laplace's great work is rather of a moral than of a mathematical nature. Lagrange and he advanced together in their study of the mechanics of the heavens, at one time perhaps along parallel lines, while at other times they pursued the same problem by almost identical methods. Sometimes the important result was first reached by Lagrange, sometimes it was Laplace who had the good fortune to make the discovery. It would doubtless be a difficult matter to draw the line which should exactly separate the contributions to astronomy made by one of these illustrious mathematicians, and the contributions made by the other. But in his great work Laplace in the loftiest manner disdained to accord more than the very barest recognition to Lagrange, or to any of the other mathematicians, Newton alone excepted, who had advanced our knowledge of the mechanism of the heavens. It would be quite impossible for a student who confined his reading to the "Mecanique Celeste" to gather from any indications that it contains whether the discoveries about which he was reading had been really made by Laplace himself or whether they had not been made by Lagrange, or by Euler, or by Clairaut. With our present standard of morality in such matters, any scientific man who now brought forth a work in which he presumed to ignore in this wholesale fashion the contributions of others to the subject on which he was writing, would be justly censured and bitter controversies would undoubtedly arise. Perhaps we ought not to judge Laplace by the standard of our own time, and in any case I do not doubt that Laplace might have made a plausible defence. It is well known that when two investigators are working at the same subjects, and constantly publishing their results, it sometimes becomes difficult for each investigator himself to distinguish exactly between what he has accomplished and that which must be credited to his rival. Laplace may probably have said to himself that he was going to devote his energies to a great work on the interpretation of Nature, that it would take all his time and all his faculties, and all the resources of knowledge that he could command, to deal justly with the mighty problems before him. He would not allow himself to be distracted by any side issue. He could not tolerate that pages should be wasted in merely discussing to whom we owe each formula, and to whom each deduction from such formula is due. He would rather endeavour to produce as complete a picture as he possibly could of the celestial mechanics, and whether it were by means of his mathematics alone, or whether the discoveries of others may have contributed in any degree to the result, is a matter so infinitesimally insignificant in comparison with the grandeur of his subject that he would altogether neglect it. "If Lagrange should think," Laplace might say, "that his discoveries had been unduly appropriated, the proper course would be for him to do exactly what I have done. Let him also write a "Mecanique Celeste," let him employ those consummate talents which he possesses in developing his noble subject to the utmost. Let him utilise every result that I or any other mathematician have arrived at, but not trouble himself unduly with unimportant historical details as to who discovered this, and who discovered that; let him produce such a work as he could write, and I shall heartily welcome it as a splendid contribution to our science." Certain it is that Laplace and Lagrange continued the best of friends, and on the death of the latter it was Laplace who was summoned to deliver the funeral oration at the grave of his great rival.
Source of this article:http://tdmur.cdjkwh.com/html/690e798885.html
Copyright statement: The content of this article was voluntarily contributed by internet users, and the views expressed in this article only represent the author themselves. This website only provides information storage space services and does not hold any ownership or legal responsibility. If you find any suspected plagiarism, infringement, or illegal content on this website, please send an email to report it. Once verified, this website will be immediately deleted.